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Abstract

Mbyocarditis encompasses inflammatory processes af-
fecting the heart muscle. In 2017, more than 3 million peo-
ple worldwide were affected, resulting in approximately
47,000 deaths. Although aspects of its etiology are well
established, important questions remain unresolved, such
as why some patients develop focal inflammation while
others present diffuse patterns involving larger myocar-
dial regions. The pathogen’s role and its interaction with
the immune system in disease progression also remain un-
der debate. Addressing these questions could substantially
improve patient treatment. Computational methods may
contribute by elucidating pathogen—immune interactions
and clarifying conditions that favor diffuse myocarditis.
This work proposes a poroelastic approach to model my-
ocardial edema in acute infectious myocarditis. A finite-
deformation model is developed using partial differential
equations to describe tissue displacement, fluid pressure,
porosity, and pathogen and leukocyte concentrations. Key
parameters are analyzed to identify conditions that may
lead to diffuse myocarditis.

1. Introduction

Myocarditis, defined as inflammation of the heart mus-
cle, affects all age groups but is more common in younger
individuals, although mortality rates are higher among the
elderly. Etiologies include autoimmune diseases, drug re-
actions, and infectious agents, with viral myocarditis being
the most prevalent. In 2017, over 3 million cases were re-
ported worldwide—a 60% increase since 1990—with an-
nual deaths rising from 27,000 in 1990 to 47,000 in 2017.
These data predate the COVID-19 pandemic, and recent
studies suggesting a strong association between myocardi-
tis and SARS-CoV-2 indicate even higher current numbers.

Identifying the precise etiology remains challenging.
Endomyocardial biopsy (EMB), the gold standard diag-
nostic tool, is invasive. However, advances in imaging,
particularly Cardiac Magnetic Resonance (CMR), have
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significantly improved non-invasive diagnosis by reveal-
ing myocardial edema. Increased vascular permeability
during infection-induced inflammation leads to interstitial
fluid accumulation, which is readily detectable on CMR.

In cases where an infectious agent is responsible for
the myocarditis, the innate immune system responds to
pathogens via cells such as macrophages and leukocytes,
which secrete pro-inflammatory cytokines. These cy-
tokines attract additional immune cells and increase vas-
cular permeability, promoting leukocyte migration but also
plasma leakage, resulting in edema. Within the heart,
edema compromises contractility and may trigger arrhyth-
mias, including ventricular fibrillation, which carries a risk
of sudden death.

Despite these advances, major questions persist regard-
ing disease progression: Why do some patients develop
focal while others develop diffuse edema? What are the
relative contributions of pathogens versus the host immune
response? These uncertainties directly impact the devel-
opment of therapeutic strategies. The complexity of im-
mune dynamics, incomplete mechanistic understanding,
and limitations of in vivo studies contribute to these gaps.

Computational modeling offers a crucial complemen-
tary approach by simulating biological processes and test-
ing hypotheses under controlled conditions. This en-
ables the exploration of disease progression and im-
mune—pathogen interactions, yielding mechanistic insights
that can guide therapeutic strategies.

This study investigates edema formation in myocardi-
tis using a coupled multiphysics model that integrates
poroelasticity and diffusion. Specifically, it couples im-
mune response dynamics with interstitial fluid mechan-
ics. The model comprises five governing equations for
tissue displacement, interstitial fluid pressure, fluid frac-
tion, and pathogen and leukocyte concentrations. Feed-
back mechanisms are included to couple biological and
mechanical processes, accurately capturing fluid transport
and immune-cell migration. The primary goal is to show
that the model can qualitatively reproduce both focal and
diffuse myocarditis and to identify the key factors driving
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the transition from localized to widespread inflammation.
To achieve this, a three-dimensional (3D) model is devel-
oped to simulate myocardial edema, comprehensively cap-
turing immune—pathogen dynamics and tissue mechanics.

2. Mathematical Model

The mathematical formulation proposed here integrates
cardiac poroelastic mechanics with immune system dy-
namics to simulate edema formation during myocarditis.
The model couples a poroelastic subsystem with an im-
mune subsystem through bidirectional feedback terms, en-
abling the emergence of focal or diffuse edema patterns.

Given the multiple scales and structural components of
cardiac tissue, a continuum framework is appropriate for
describing its behavior. The myocardium is modeled as a
poroelastic medium fully saturated with interstitial fluid,
filling the entire pore space. Through this medium, two
species interact and are transported: a generic pathogen
(cp) and leukocytes (c;). Standard continuum mechanics
notation is adopted for the proposed model.

Let Q C R, with d = 1, 2, 3, denote the reference con-
figuration of a deformable porous medium. Its boundary
0f1 is partitioned into I U 3, with n the outward unit nor-
mal. A material point at x is displaced to x + w, with
u : 0 — R. The deformation gradient is given by
F =1+ Vu,J = detF. From F follow the right and
left Cauchy—Green deformation tensors, C = F'F and
B = FF", respectively.

Fluid transport through the porous matrix follows
Darcy’s law. Under finite deformation, Biot’s formula-
tion [1] is employed. The first Piola—Kirchhoff stress ten-
sor is

P =Py — apJF~°, (1)

where « is the Biot—Willis coefficient, p is pore pressure,
and P.g is the effective stress tensor derived from the strain
energy density P.g = %.

For the solid matrix (assumed incompressible), two con-
stitutive laws are considered. The neo-Hookean (NH)

model given by

PpNE %(11 —d), )
and the anisotropic Holzapfel-Ogden (HO) model [2]:
O = Jofeplb(h —d}+ 30 o {epbillai — 17 - 1}
ie{f,s}
a

f
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The relevant invariants are I = trC, I s = fo - (Cfp),
Iis = so - (Cso), and Ig s = fy - (Csg). The effective
stress tensor for the NH model is

Per = pus(F—F %) + AsIn(J)F~°, “)

with Lamé parameters s and Ag. For the HO model, it is
given by
Pyt = JoF" + 25 In(J)F*, (5)

with the Cauchy stress given by o = % PFT. To impose
the constraint of near-incompressibility, a volumetric en-
ergy U(J) = 324(InJ)? is included [3].

Since the myocardium is assumed saturated, the total
volume is V' = V; + V;. The solid incompressibility as-
sumption leads to J = 1 + ¢y — ¢g, where ¢ is the fluid
volume fraction and ¢y is its reference value [1].

The poroelastic subsystem is governed by the conser-
vation equations for displacement u, fluid pressure p, and
fluid fraction ¢:

— Div[Pog — apJF ] = 0, (62)
PrBt — %DiV@fPfJF*lﬁF’th) = pst(p; cp),

(6b)
J =5 =1-= o (6¢)

Here k = koI is the permeability tensor. Eq. (6a) en-
forces momentum balance. Eq. (6b) describes fluid mass
conservation, where the source £ accounts for capillary and
lymphatic exchange. Eq. (6¢) ensures that volume changes
are solely fluid-driven.

Two chemical species are transported in the intersti-
tial fluid: pathogens (c,) and leukocytes (c;). Cytokines
are not explicitly modeled; their effect is represented in-
directly through vascular permeability changes driven by
cp and ¢;. Leukocytes extravasate at rate \j,;, migrate
chemotactically towards the pathogen with sensitivity Y,
and eliminate pathogens at rate \;,. Their reaction terms
are defined as: r; = Apicpcr, and 7, = O (Vp — Aipci)cp,
where v, =1, — d,.

The governing equations for the immune subsystem are:

D ) _ _
E(qsfcp)—;Dw((prF 'D,F "Vc,) =7, (72)

D . _ _
Ft((bfcl) — %Dlv(gbeF 1D1F thl—

x¢rcJE'F*Vep) = 1. (7b)

If diffusion is isotropic, D = Dyl and Dy = D;I. For
anisotropic pathogen diffusion along fibers, the tensor is
given by Dp = DpI + (Dp — Dt)fO X f().

The fluid exchange term #(p, ¢,) couples the poroelastic
and immune parts, incorporating both the Starling [4] and
Hill [5] mechanisms:

U(p,cp) = Cr(cp) [pc —p—o(cp)(me — WZ)]

—qo |1+

vmax(p - pO)n
LmaxdlP 7 PO) | (g
kw(p—po)n] ©

Page 2



with the filtration coefficient C'; and and the reflection co-
efficient o defined as:

Cf(cp) = (S/V)LpO(l + Cbpcp)a (9)
o(ep) = oo(l + cbpcp)_l. (10)

Here p. is capillary pressure, 7. plasma oncotic pressure,
m; interstitial oncotic pressure, go basal lymphatic flow,
Umax Maximum lymphatic flow, k,, pressure half-life, n
Hill coefficient, pg reference interstitial pressure, Lo cap-
illary wall permeability, c;, pathogen influence on perme-
ability, and S/V surface-to-volume ratio. More details
about the mathematical model and its implementation can
be found in our previous papers [6, 7].

3. Numerical Results

This section presents the numerical results of myocar-
dial edema within the human Left Ventricle (LV), focusing
on two distinct scenarios: focal myocarditis and diffuse
myocarditis. The simulations were performed using the
coupled poroelastic and immune response model, detailed
in the previous section, and a ventricular geometry seg-
mented from a specific patient image dataset [8] using the
HO model.

All computational procedures and experiments were im-
plemented using the open-source Finite Element Method
(FEM) library FEniCS [9]. A fixed tolerance of 10~ for
the residual norm (absolute or relative) was adopted as the
convergence criterion in the Newton iterative scheme, and
the resulting linear systems were solved using the MUMPS
solver [10]. Models were discretized using tetrahedral el-
ements in 3D. Temporal derivatives were approximated
with the implicit Euler method in a monolithic approach,
using a time step size of At = 1x 107! day. A mixed finite
element formulation was employed for the solution vari-
ables (u, p, cp, €1, ¢¢). Specifically, the displacement (u)
and fluid fraction (¢ ) were approximated with the MINI
element [11], while Lagrange linear elements were used
for the scalar variables c,,, ¢;, and p.

Simulations were executed on a cluster equipped with
an AMD EPYC 7713 and 528GB RAM (running Rocky
Linux 9.3). Codes were written in Python (v3.8.10) with
FEniCS 2019.2, and results were post-processed using Par-
aview. The full set of parameters used in the simulations
can be found in our previous work [6]. Table 1 summarizes
the key parameter values identified to distinguish between
focal and diffuse myocarditis.

Error control in complex multiphysics problems remains
challenging [12, 13]. While some works utilize the in-
crement norm [12], others prefer the residual norm [13].
Here, the residual norm was chosen, as vanishing incre-
ments may reflect solution stagnation rather than true con-
vergence.

Figure 1 illustrates the simulated fluid phase results in
focal (left) and diffuse (right) myocarditis. Each line rep-
resents the evolution of fluid phase values at distinct spatial
points over time, demonstrating the dynamics induced by
myocarditis.

Table 1. Parameter values used to represent focal and dif-
fuse myocarditis in 3D simulations.

Parameter Unit Focal 3D  Diffuse 3D
D, em?/d 5x 1074 1x1073
D, em?/d 5x 1071 3x 1072
Apl 1/d (cell/em3) 1.2x 1071  5x 1072
Yp 1/d 9 x 10° 6 x 102

Our simulations highlight that the mechanical proper-
ties of the tissue, the efficiency of the immune response,
and the characteristics of the pathogen jointly govern the
dynamics of myocarditis and edema formation. In par-
ticular, we observed that the ratios \;, /7, (phagocytosis-
to-pathogen reproduction ratio) and D;/D,, (leukocyte-to-
pathogen mobility ratio) facilitate the widespread diffusion
of both the pathogen and the resulting edema in the heart.

The diffuse edema formation in the LV was found to fol-
low the propagation of a 3D pathogen wave (not explicitly
shown in the Figure) that originated from a small initial
infected region. This wave traveled through the cardiac
tissue until it collided with itself and eventually vanished.
The presence of pathogens locally induces the entry of
leukocytes and fluid into the interstitial space of the tissue.
As this pathogen wave sweeps across the heart, diffuse
edema emerges. This spatiotemporal pattern strongly sug-
gests the existence of a nonlinear reaction-diffusion wave,
a phenomenon typically observed in complex biological
systems.

While the propagation of the pathogen front likely de-
pends on pathogen diffusion and replication, the wave tail
is primarily governed by diffusion and leukocyte efficiency
in pathogen elimination. However, sensitivity analysis
further revealed that other tissue characteristics, such as
stiffness, also significantly impact diffuse edema forma-
tion [6]. The clear characterization of this nonlinear wave,
identified in the development of diffuse edema using the
proposed model, warrants further dedicated investigation
in future studies.

4. Conclusion

This work presented a poroelastic model to investigate
edema formation in acute infectious myocarditis, coupling
cardiac tissue mechanics with immune-pathogen interac-
tions. The simulations reproduced both focal and diffuse
edema, showing that tissue stiffness, pathogen dynam-
ics, and immune efficiency play central roles in disease
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Figure 1. Evolution of interstitial fluid phase ¢; over time
points for (left) focal myocarditis and (right) diffuse my-
ocarditis, illustrating the difference in dynamics and spread
between the two conditions.

progression. In particular, the emergence of diffuse my-
ocarditis was associated with the propagation of nonlinear
pathogen waves through the myocardium. These findings
highlight the potential of computational modeling to im-
prove the mechanistic understanding of myocarditis and to
support the development of new therapeutic strategies. Fu-
ture work will focus on further characterizing the nonlinear
dynamics observed and extending the model to integrate
additional biological pathways.

Acknowledgments

This work has been supported by UFJF, by CAPES - Fi-
nance Code 001; by CNPq - Grant number 423278/2021-
5, 308117/2025-5, and 301120/2025-0; and by FAPEMIG

Grant number APQ-02513-22 and PCE-00048-25; by
FINEP SOS Equipamentos 2021 AV02 0062/22.

References

[1] MacMinn CW, Dufresne ER, Wettlaufer JS. Large defor-
mations of a soft porous material. Phys Rev Appl 2016;
5(4):044020(30).

[2] Nash MP, Hunter PJ. Computational mechanics of the heart.
From tissue structure to ventricular function. J Elasticity
2000;61(1-3):113-141.

[3] Zheng P, Zhang K. On the effective stress law and its appli-
cation to finite deformation problems in a poroelastic solid.
Int J Mech Sci 2019;161-162:e105074.

[4] Starling EH. On the absorption of fluids from the connec-
tive tissue spaces. J Physiol 1896;19(4):312-326.

[5] Keener JP, Sneyd J. Mathematical physiology, volume 8.
Springer, 1998.

[6] Lourenco WdJ, Reis RF, Ruiz-Baier R, Rocha BM, dos
Santos RW, Lobosco M. A poroelastic approach for mod-
elling myocardial oedema in acute myocarditis. Front Phys-
iol July 2022;13.

[71 Barnafi NA, G6émez-Vargas B, Lourengo WJ, Reis RF,
Rocha BM, Lobosco M, Ruiz-Baier R, dos Santos
RW. Finite element methods for large-strain poroelastic-
ity/chemotaxis models simulating the formation of myocar-
dial oedema. J Sci Comput July 2022;92(3).

[8] Warriner DR, Jackson T, Zacur E, Sammut E, Sheridan P,
Hose DR, Lawford P, Razavi R, Niederer SA, Rinaldi CA,
Lamata P. An asymmetric wall-thickening pattern predicts
response to cardiac resynchronization therapy. JACC Car-
diovasc Imag 2018;11(10):1545-1546.

[9] Aln®s MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg
A, Richardson C, Ring J, Rognes ME, Wells GN. The
FEniCS project version 1.5. Arch Numer Software 2015;
3(100):9-23.

[10] Amestoy PR, Duff IS, L’Excellent JY, Koster J. Mumps:
a general purpose distributed memory sparse solver. In
International Workshop on Applied Parallel Computing.
Springer, 2000; 121-130.

[11] Arnold DN, Brezzi F, Fortin M. A stable finite element for
the stokes equations. Calcolo 1984;21(4):337-344.

[12] Borregales M, Radu FA, Kumar K, Nordbotten JM. Robust
iterative schemes for non-linear poromechanics. Comput
Geosci 2018;22(4):1021-1038.

[13] White JA, Castelletto N, Klevtsov S, Bui QM, Osei-Kuffuor
D, Tchelepi HA. A two-stage preconditioner for multiphase
poromechanics in reservoir simulation. Comput Methods
Appl Mech 2019;357:112575.

Address for correspondence:

Marcelo Lobosco PPGMC, Campus Universitdrio, Rua José
Lourenco Kelmer, s/n - Sao Pedro, Juiz de Fora - MG, 36036-
900

marcelo.lobosco @ufjf.br

Page 4



